
Foundations of Quantum Theory in the Light
of Bohmian Non-commutative Dynamics

B. J. Hiley∗

TPRU, Birkbeck, University of London, Malet Street,
London WC1E 7HX.

(2 April 2014)

The Finnish Society for Natural Philosophy 25 Years
K.V. Laurikainen Honorary Symposium 2013

Abstract

In this paper we discuss the notion of a ‘particle’ and its ‘trajec-
tory’ in the Bohm approach to quantum theory in the context of a
non-commutative dynamics which has classical mechanics as a com-
mutative sub-algebra. We study the von Neumann-Moyal algebra and
show that the key equations used in the Bohm approach are already
contained within this structure. They appear as projections from the
non-commutative phase space into space-time. This structure leads
us to a more radical view of quantum processes involving individual
particles.

1 Introduction

It gives me great pleasure to be part of a meeting to celebrate Professor
Laurikainen’s contribution to the philosophy of physics, particularly in the
area of foundations of quantum mechanics. It was in this area that I first
interacted with him a number of years ago. I was especially intrigued by his
detailed study of the work of Pauli, which helped me understand better the
contribution the Pauli made to the development of the early interpretations
of quantum mechanics.
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Pauli not only contributed some profound papers on general relativity
and quantum field theory, but influenced the debates on the interpretation
of the quantum formalism, usually in the form of letters, which Laurikainen
collected, enabling us to understand Pauli’s unique contributions to those
early debates.

My own particular interest at the time was in the appearance of quan-
tum non-locality in entangled states. I was intrigued to understand why the
absolute notion of locality was not questioned more explicitly when the EPR
paradox was first proposed and discussed [14]. Pauli’s letters seemed to sug-
gest that he realised locality would have to be given up, but there was no
real discussion of this issue that I have found. Perhaps Einstein’s comments
about “spooky action at a distance” was enough to stifle such a discussion.
Nevertheless I was intrigued to find out if, after Pauli had started his col-
laborations with Carl Jung, quantum non-locality was behind his embracing
Jung’s notion of synchronicity. Although I have not found any discussions of
giving up locality directly, nevertheless in the background of these discussions
there was always the notion of “unus mundus”, implying a kind of “whole-
ness” that Bohr considered to be one of the key new features of quantum
phenomena.

Laurikainen was always willing to encourage debates on the meaning of
the quantum formalism, but was unhappy with Bohm’s 1952 proposals [2].
His main criticisms were two-fold. Firstly the formalism contained terms that
were not accessible to measurement, namely the de Broglie-Bohm momentum
and energy. Secondly the theory seemed to be a return to classical physics
when Bohm adopts the classical canonical relations pB = ∇S and EB =
−∂tS but replaces the classical action, S, by the phase of the wave function
ψ = ReiS/~ without justification. Nevertheless by making this change it
has been shown that the notion of a particle trajectory can be consistently
maintained if the formalism is used correctly. This directly contradicted
Bohr’s assertion that it was no longer possible to give classcial-like pictures of
quantum phenomena because this implies that a system under investigation
could be sharply distinguished from the means of observation. For Bohr
the impossibility of making such a sharp separation was the key notion that
implied the new radical notion of wholeness.

Secondly the criticism raised in some philosophical circles claims that
Bohm could only maintain the classical notion of a “particle trajectory”
because he had changed the mathematical content of the theory by adding
a new term. This false conclusion was probably encouraged by Heisenberg’s
criticism [25] of Bohm’s proposal when he writes “.... some strange quantum
potentials introduced ad hoc by Bohm”. The extra term that Heisenberg was
referring to is not “added” ad hoc. It appears when one derives the real part
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of the Schrödinger equation under polar decomposition of the wave function
and has not been added.

These two features reveal a profound misunderstanding of the whole ap-
proach. Recently it has been realised that the terms like PB and EB are
weak values and these can now be measured using new experimental tech-
niques [28, 31, 32]. Although concepts of “trajectories” can still be main-
tained, they arise from the quantum formalism itself, without the need to
add any new terms and without the need to appeal in any way to classical
mechanics. Classical mechanics is to be seen as a limiting case of the quan-
tum motion. The key question concerns the nature of this deeper structure,
which I will discuss in detail in this paper.

2 Return to the Origins of Quantum Theory

2.1 Non-commutative Products

Rather than developing my ideas from some contemporary interpretation,
I would like to go back into the history of quantum mechanics and to re-
examine the original, somewhat neglected Weyl-von Neumann approach of
the 1930s. This approach is radically different from the approach that ap-
pears in von Neumann’s classic book “Mathematical Foundations of Quan-
tum mechanics” [38]. Just before the book appeared, von Neumann wrote
a classic paper “Die Eindeutigkeit der Schrödingerschen Operatoren” [37],
which suggests a very different approach to quantum phenomena than the one
set out in his book. This paper showed, among other things, how the whole
operator formalism could be replaced by functions on a non-commutative
symplectic space bringing us into the realm of a modern approach to geom-
etry. Formally we write

Â⇔ A(α, β) (1)

Here Â is an operator in a Hilbert space and A(α, β) is a function on some
symplectic space. The equivalence between the two approaches follows from
the relation

Â =

∫ ∫
A(α, β)Ŝ(α, β)dαdβ (2)

where Ŝ(α, β) = ei(αP̂+βX̂). For simplicity, we will only consider a two di-
mensional symplectic space as the generalisation to 2n-dimensions is straight
forward and adds no new features that are relevant to our discussion, which
is necessarily an over-view, emphasising the main points.
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The significance of the symplectic space is that it is the space within
which classical mechanics can also be formulated, so that both quantum and
classical mechanics appear in the same space, the difference being that in
classical mechanics the product of the functions is commutative, while in the
quantum domain, the functions must satisfy a non-commutative product,
F (α, β) ? G(α, β) 6= G(α, β) ? F (α, β). This product contains the classical
structure as a sub-structure as we will show below. This generalised product
is now known in the physics community as a Moyal product even though it
was first defined in the von Neumann paper eighteen years earlier! To the
mathematicians the product is known as a twisted product [22]

Moyal’s contribution was twofold. Firstly, he suggested that we write
α = x and β = p, thus attempting to give a physical significance to the
abstract formalism of von Neumann, namely that it is some form of “physi-
cal phase space”, albeit a non-commutative version. Secondly, he suggested
that the resulting formalism could be regarded as a generalisation of ordinary
statistical theory where we replace a key feature of this theory, the character-
istic function, by a characteristic operator. In this way a classical statistical
phase space becomes a special case of a non-commutative statistical theory.
In fact the non-commutative phase space contains a commutative subspace
that is the classical phase space. This commutative limit appears when we
neglect terms of O(~2). This is exactly the type of structure that Primas and
Müller-Herold [35] have called for.

Let us immediately dismiss one worry that always arises at this point.
Surely we cannot have an (x, p) phase space in the quantum domain because
of the uncertainty principle. The problem here is that in changing from α to
x and β to p, one immediately assumes the symbols (x, p) mean the position
and momentum of a point particle. But a deeper investigation shows that the
x and p are coordinates of the centre of an extended region of phase space,
a region that de Gosson has called a ‘blob’ [21]. A similar extended notion
of a particle was also proposed by Weyl [44] when he writes’

Hence a particle itself is not even a point in field space, it is
nothing spatial (extended) at all. However, it is confined to a
spatial neighbourhood, from which its field effects originate.

This idea of an extended region in phase space becomes much more com-
pelling if we evoke the “no squeezing theorem” of Gromov [23]. This deep
theorem reveals a new topological invariant that arises even in a commutative
symplectic geometry. It can be regarded as the “footprint” of the uncertainty
principle that quantum mechanics leaves in the classical domain [19, 20]. It
is only in the classical limit that the ‘blob’ becomes a point particle. Thus
to make the whole formalism work, we are forced to regard the ‘particle’,

4



not as a point, but as a ‘blob’ with a finite extension in phase-space. In-
deed to accommodate this structure we need a product that is translation
and symplectic covariant, associative and non-local as was emphasised by
Várilly and Gracia-Bondia [42]. As we will see it is this non-local feature
that mathematically captures Bohr’s notion of wholeness.

2.2 Non-commutative Probability.

Of the two suggestions of Moyal discussed in the previous sub-section, the
most important one for our purposes here was his proposal, that in quan-
tum physics, we are dealing with a generalisation of an ordinary statistical
theory to a non-commutative one. What Moyal noticed was that the ele-
ment Ŝ(P̂ , X̂) = ei(αP̂+βX̂), used in equation (2), behaves like an operator
generalisation of the ‘characteristic function’. It is this function that plays a
central role in ordinary statistical theories. The corresponding characteristic
function is defined as an expectation value of this operator Ŝ(P̂ , X̂), giving

Fψ(α, β, t) =

∫
ψ∗(x, t)ei(αP̂+βX̂)ψ(x, t)dx.

Then the expectation of any operator Â can be written in the form

〈Â〉 =

∫ ∫
a(α, β, t)Fψ(α, β, t)dαdβ. (3)

This suggests that Fψ(α, β, t) can be treated as probability measure in the
non-commutative symplectic geometry. Historically the feature was rejected
because the probability measure can take on negative values inspite of the
implicit support of both Dirac [11] and Bartlett [1] in the ‘40s. They argued
that there was nothing wrong with using negative measures and offered an
interpretation of these measures. However one should notice that although
the probability measure can take negative values, the probability values of
observable quantities always turn out to be positive as was shown by Feynman
[16].

2.3 Non-commutative Symplectic Geometry.

The precise form of non-commutative product in the symplectic space follows
from

F (α, β) = G(α, β) ? K(α, β) =

∫ ∫
e2i(γβ−δα)G(γ − α, δ − β)K(α, β)dαdβ,
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a relation first derived by von Neumann. It is not difficult, but tedious to
show this product is non-commutative (for details see von Neumann [37]).

Moyal obtained a simpler expression for this product, which he wrote in
the form

G(p, x, t) ? K(p, x, t) = G(p, x, t) exp

[
i~
2

(←−
∂

∂x

−→
∂

∂p
−
−→
∂

∂x

←−
∂

∂p

)]
K(p, x, t).

Here we have already written α = x and β = p. If we choose G(p, x, t) = x
and K(p, x, t) = p, this expression immediately gives

x ? p− p ? x = i~

illustrating how the Heisenberg commutator is reflected in the star product
of phase space.

The Moyal form of the star product immediately enables us to see how
the classical commutative phase space emerges from this structure. First we
define two brackets, the Moyal bracket and the Baker bracket (or Jordan
product). These are defined by

{G,K}MB :=
G ? K −K ? G

i~
and {G,K}BB :=

G ? K +K ? G

2
The important feature of these brackets is that they can be expanded as
polynomials in ~. We then find to order ~2, the Moyal bracket reduces to
the Poisson bracket, while the Baker bracket reduces to the commutative
product G(x, p)K(x, p). Thus the von Neumann-Moyal algebra contains the
classical limit. It is this relationship from which deformation quantisation
arises [30].

There is no need to look for a correspondence between the quantum com-
mutator and the Poisson bracket, a process that fails as was demonstrated
in the Groenwald-van Hove theorem [24]. Furthermore there is no need to
introduce the notion of decoherence as a fundamental process to obtain clas-
sical physics. Of course, this does not mean that decoherence plays no role in
quantum processes. It plays a vital role in real experiments where noise and
other thermal processes enter the experiment to destroy quantum coherence.

3 Time Development Equations in a Non-

commutative Structure.

3.1 Background.

Given that the theory we are developing is a non-commutative statistical
theory, we are now faced with the problem of finding the time development
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equations in a non-commutative algebra. This means that we must have two
different types of elements, those acting from the left and those acting from
the right, so that left and right translations must be treated separately.

Such a structure was already anticipated by Dirac [10] in a different con-
text. He noticed that in trying to bridge the gap between those problems
involving only pure states, |ψ〉, and those involving mixed states, which re-
quire a density matrix, |ψ〉〈φ|, we are faced with a similar problem, namely
the possibility of two-sided differentation.

To see what this means, suppose we replace |ψ〉 by a matrix of n rows and
m columns, n being the number of rows and columns in the square energy
matrix H, which we can think of as representing the Hamiltonian. Clearly
this must satisfy an equation that has the same form as the Schrödinger
equation

i~
d|ψ〉
dt

= H|ψ〉.

Suppose 〈φ| is replaced by a matrix with m rows and n columns. Here H
must act on this from the right,

−i~d〈φ|
dt

= 〈φ|H.

Now the product |ψ〉〈φ| will be replaced by a square matrix with n rows and
n columns and will satisfy

i~
d(|ψ〉〈φ|)

dt
= i~

d|ψ〉
dt
〈φ|+ |ψ〉

(
i~
d〈φ|
dt

)
= H|ψ〉〈φ| − |ψ〉〈φ|H.

which, of course when written in the form

i~
dρ

dt
= Hρ− ρH = [H, ρ] (4)

is just the quantum Liouville equation. To arrive at this equation we have
subtracted the Schrödinger equation from its dual.

The question that has interested me is to ask what happens if we add the
Schrödinger equation to its dual. We will immediately get

i~
(
d|ψ〉
dt
〈φ| − |ψ〉d〈φ|

dt

)
= Hρ+ ρH. (5)

At first sight this equation looks unfamiliar, but it may be helpful to write
the LHS in terms of a standard notation used in field theory [36], namely,(

d|ψ〉
dt
〈φ| − |ψ〉d〈φ|

dt

)
= |ψ〉

←→
∂ t〈φ|
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This is recognised as a symbol used in relation to the energy of the Dirac
electron. Here the left and right translations have a profound influence on
the structure and this form was used by Schwinger [41] in his classic paper
that laid the foundations of QED.

This extra equation is not well known but it has appeared explicitly in
the chemical literature, as for example in Dahl [8]. If we are relying on the
quantum Liouville equation to describe our system, as we do when we are
dealing with mixed states, then we need the extra equation (5) to complete
the specification of the energy properties of the mixed state.

Although Dirac’s aim was to find the relationship between the way we
deal with mixed states using matrices and the way we deal with pure state
vectors, one should realise that we can also apply equations (4) and (5) to
a system in a pure state. For such a state, ρ2 = ρ and if the matrix is
of rank one, then and only then can it be written as |ψ〉〈φ|, where these
symbols now take on their usual meaning. Of course it may be argued that
it seems perverse to propose more complicated method when the straight
forward method of using the Schrödinger equation is standard. However I
am interested in the relationship between the different approaches to the
same mathematical structure and to explore this relation in detail I need this
more general formulation.

At this stage it is useful to bring out the relationship between this seem-
ingly abstract structure and the equations used in the Bohm interpretation
for if I do not mention Bohm then I will be accused of losing my way!

Equations (4) and (5) are representation free, so let us examine equation
(5) in the x-representation. This leads directly to the quantum Hamilton-
Jacobi equation that forms the basis of the Bohm approach.

i~
dS

dt
+

1

2m

(
dS

dx

)2

+Q(x) + V (x) = 0 (6)

where V (x) is the classical potential and Q(x) is an additional term which
has been called the quantum potential

Q = − ~2

2m

∂2R

∂x2
.

where we have again written ψ = R exp[iS/~]. If we regard Q(x) as a qualita-
tively new form of energy appearing at the quantum level, then this equation,
and in consequence equation (6), are expressions of the conservation of en-
ergy.

This method of arriving at equation (6) should be contrasted with the
original approach of Bohm [2] who simply arrives at the equation by looking
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at the real part of the Schrödinger equation when the wave function is written
in polar form. Here however, equation (6) appears as a special case of a more
general approach. Indeed this approach can then also be applied to the Pauli
and Dirac equations [26].

3.2 von Neumann-Moyal Algebra

Let us now derive the time development equations in the full von Neumann-
Moyal algebraic approach introduced in section 3. If we again write α = x
and β = p, we find

H(x, p) ? Fψ(x, p, t) = i~
∫
e−iτpψ∗(x− ~τ/2)

−→
∂ tψ(x+ ~τ/2)dτ. (7)

and

Fψ(x, p, t) ? H(x, p) = −i~
∫
e−iτpψ∗(x− ~τ/2)

←−
∂ tψ(x+ ~τ/2)dτ. (8)

Subtracting equation (8) from equation (7) gives us a Moyal bracket equation

∂tFψ = (H ? Fψ − Fψ ? H)/i~ = {H,Fψ}MB. (9)

If we expand this equation to O(~2), we arrive at the classical Liouville
equation

∂tF + {F,H}PB = 0, (10)

where {..}PB is the Poission bracket. As we have remarked above, the clas-
sical limit appears as a sub-agebra and the Moyal bracket equation gives an
expression for the conservation of probability.

There is also a second equation, the Baker bracket equation, formed by
adding equations (7) and (8). This is

2{H,Fψ}BB = i~
∫
e−iτp[ψ∗(x− ~τ/2)

←→
∂ tψ(x+ ~τ/2)]. (11)

At first sight it is not clear what the RHS of equation (11) means, but it
turns out that it is an expression for the conservation of energy. We can get
a clearer insight into this by again writing ψ = ReiS/~. We find

ψ∗←→∂ tψ

ψ∗ψ
=

[
∂tR(x+ ~τ/2)

R(x+ ~τ/2)
− ∂tR(x− ~τ/2)

R(x− ~τ/2)

]
+i

[
∂tS(x+ ~τ/2)

S(x+ ~τ/2)
− ∂tS(x− ~τ/2)

S(x− ~τ/2)

]
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which still does not look too helpful. However if we go to the limit O(~2) we
find

H ? Fψ + Fψ ? H = −2(∂tS)Fψ +O(~2)

By substituting this expression into equation (11) we find

(∂tS)Fψ +HFψ = 0.

By cancelling out the Fψ, we are left with the classical Hamilton-Jacobi
equation

∂S

∂t
+H = 0. (12)

Once again we see a different aspect of the classical limit emerging.
Note that equations (9) and (11) are equations arising from within the

von Neumann quantum algebra and therefore is fully quantum mechanical.
In fact these equations contain more information than equations (4) and (9)
which are written in terms of the usual bra-ket notation. To see why this is
so, we begin by simply remarking that equations (9) and (11) are equations
operating in a phase space (i.e., a symplectic space), whereas equations (4)
and (5) are more suitable for a description in configuration space. Clearly the
space involved in the von Neumann-Moyal approach has twice the number
of dimensions so it is already a larger space.

Since the symplectic phase space has double the number of dimensions of
the configuration space there must be some way of introducing a projection
operator to relate the two spaces. The formal introduction of this projection
operator is too technical to present here. However a full discussion of the
existence of this projection operator can be found in Varilly and Gracia-
Bondia [42]. A simpler account is outlined in Hiley [29] .

I should like to end this section by saying a few more words about the rela-
tion between the algebraic structure and the traditional approach to quantum
mechanics. In his original paper, Schrödinger [40] started from the classical
Hamilton-Jacobi equation and made an attempt, as he put it, to find a Hamil-
tonian “undulatory mechanics” based on a generalisation of the symplectic
structure of Hamiltonian ray optics. His pioneering attempt was heuristic,
and at a certain step in his ‘derivation’, he added a footnote stating “I realise
that this formulation is not quite unambiguous”. So although he arrived at
an equation which gave correct answers, it is not clear where the equation
actually come from1. The equation is generally presented in a heuristic way

1Feynman’s answer to the question “Where does the equation come from?” was,
“Nowhere. It’s not possible to derive it from anything we know. It came out of the
mind of Schrödinger...” [15].
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and justified a posterori. However in a recent paper, de Gosson and I have
shown that the mechanics he was looking for can be found in the covering
group of the symplectic group, the metaplectic group [20]. It is the covering
group that the essential features of quantum phenomena find their home, but
the importance of the covering group is another story

3.3 Relation to the Density Matrix

Let us return to consider the expectation value of the characteristic operator,
Fψ(α, β, t), in more detail. As we have pointed out, although Moyal identified
α with x and β with p, he gave no reason to identify these parameters with
the position and momentum of a localised particle.

Bohm and Hiley [4] developed an algebraic approach to a generalised
phase space from a different point of view. Following the suggestion by
Frölich [17] that the density matrix should be regarded as a fundamental
description of state of a system, they started from a two-point density ma-
trix, ρ(x1, x2, t) in configuration space and, using the Wigner transforma-
tion, obtained an expression for F (x, p, t) which had the same form as used
in equation (3), but where the (x, p) now correspond to the mean values
x = (x2 + x1)/2 and p = (p2 + p1)/2 of two points in phase space. The
detailed calculations show that it is this non-local feature that is ultimately
responsible for the non-commutative product. The pair of points are con-
jugate points and in consequence the parameters (x, p) defined in this way
are not subject to the uncertainty principle because the operator equiva-
lents commute. That this feature gives rise to the non-locality in the Moyal
product has been formally proved by Varilly and Gracia-Bondia [42].

Finally let us show that the Moyal algebra contains the two defining
equations of the Bohm approach. Since we are assuming Fψ(x, p, t) is a
probability distribution, we can construct two conditional expectation values.
The first is the Moyal momentum, PM , defined by

ρ(x)PM =

∫
pFψ(x, p)dp =

~
2i

[ψ∗∇ψ − (∇ψ∗)ψ] = ∇S.

This is identical to the Bohm momentum PB = ∇S. Traditionally this has
been regarded as a guidance condition, but in this approach there are no
guiding waves, simply dynamics. Furthermore Moyal derives an equation for
the transport of this momentum, which turns out to be exactly the quan-
tum Hamilton-Jacobi equation (6). Thus we see there exists a very close
relationship between the Moyal algebra and the approach of Bohm. In this
view, the Bohm momentum PB is simply the conditional expectation value
of the momentum p. Thus the Bohm approach itself can be considered as a
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consequence of the generalised statistics. But even more, it is an aspect of a
generalised non-commutative dynamics.

4 Interpretations

We must now turn to examine the question of what this all means as far
as an interpretation of the formalism is concerned, a question that would
have interested Professor Laurikainen. In the algebraic approach the ‘wave’
no longer plays a dominant role, nor, incidentally, does the point particle.
Process becomes the basic descriptive form with the wave function being
replaced by a density element, F (x, p, t). This function characterises an
extended region of phase space containing the energy involved in the process,
de Gosson’s ‘quantum blob’ [9,21]. Remember this is for a single excitation;
with entangled particles, the energy becomes even more non-local.

The time evolution of this region is governed by a non-commutative dy-
namics described by equations (7) and (8). In the classical limit these equa-
tions become the classical Louiville equation and the classical Hamilton-
Jacobi equation which, as is well known, are key equations of classical dy-
namics. In this limit the region of phase space behaves like a ‘point’ so the
classical particle reappears. However in reality all particles have an inter-
nal structure and the stability of the particle is maintained by an internal
quantum dynamics.

As we have seen, with non-commutativity comes non-locality so that,
in the quantum domain, we no longer have point-like particles but regions
of quasi-local energy in the case of single particles. How then are we to
interpret Bohmian trajectories? The parameter x gives the mean position of
the quantum blob, and we can take PB(x) to describe its mean momentum
with which it is transported by the quantum Hamilton-Jacobi equation (6).
This enables us to retain the notion of a quasi-localised particle, following a
trajectory.

Note that what we are calling a ‘particle’ is an invariant feature arising
from the structure of the two real fields and is not added as an afterthought.
In other words we must not identify this quasi-localised particle as a separate
‘rock-like classical particle’. However it is still a beable in the sense that it
identifies a single individual quantum process, but this process in not point-
like and must not be identified with a classical particle. In this way we can
argue that we have an individual process, the mean value of which, moves
along a trajectory. If we do this then we are not lead to any contradictions or
inconsistencies in interpreting the results of experiments, but in doing this we
must not introduce other classically plausible features that are not consistent
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with the mathematical formalism.
I could end the story here but there is another possibility within the

algebra we can consider. F (x, p, t) is symmetric in x and p so that we can
also consider the conditional expectation value for the position, XM . Now the
process can be characterised by a different pair of variables (XB, p) so that we
are able to construct another phase space based on these particular variables.
Again we have the possibility of defining flow lines or trajectories in this
space, but these can be very different from the previous flow lines as shown
in Brown and Hiley [7]. We seem to be back at the position summarised in
the following quotation of Pauli [39]

One can look at the world with a p-eye or with an x-eye, but if
one wishes to open both eyes at the same time, one goes wrong.

Thus we are faced with a dilemma, which of these two phase spaces is the
‘real’ phase space? If we assume that space-time is an absolute necessity, say,
if only because all our experiments are performed in space-time, then we can
follow Dürr and Teufel [12] and argue that all physical processes, quantum
and classical, must evolve in space-time: this is our reality. Therefore we must
take the phase space constructed on (x, PB) to be the correct description of
all physical processes.

But why should space-time be primary? It seems the simplest thing to do,
but what is the compelling reason for such an assumption? Kant certainly
assumed that space was an a priori given, but was he right?

Let us try to look at it in a different way. All our knowledge of the prop-
erties of space-time are abstracted from the behaviour of physical processes.
For example, with the rigid metre rule, we construct Euclidean geometry.
With a radar gun and a clock, Page [33] constructs the Minkowski space-
time. In general relativity we find a curved space-time conditioned by the
presence of matter itself. Space-time is not a given a priori, it is abstracted
or even constructed from physical processes.

We can see this close tie between physical processes and geometry in
a mathematical construction due to Gelfand-Naimark [43]. What this con-
struction shows is that if we are faced with a commutative dynamical algebra,
there is a duality between the algebra and the manifold that supports that
dynamics. We can either follow the traditional route by starting from an
a priori given space-time with its topological and metrical structure given
and then build on it the dynamics of physical processes. Alternatively we can
start from the commutative dynamics defined by the physical processes them-
selves and then abstract from this structure a unique geometry; its points
appearing as maximal ideals, together with well defined topological and met-
rical properties. Einstein’s commutative general relativity shows that space
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and its properties are co-defined. A discussion of how general relativity fits
in to the Gelfand-Naimark scheme can be found in Geroch [18].

When we are faced with a non-commutative dynamics, we have a serious
problem. There is no unique underlying manifold, no unique underlying
phase space and therefore no unique underlying space-time. Such a situation
was already anticipated by Einstein [14] when he wrote

....perhaps the success of the Heisenberg method points to a
purely algebraic description of nature, that is, to the elimina-
tion of the continuous functions from physics. Then, however, we
must give up, in principle, the space-time continuum.

Einstein here attributes the non-commutativity to Heisenberg. The von
Neumann-Moyal algebra builds Heisenberg’s non-commutativity into a non-
commutative symplectic phase space.

When we consider a non-commutative geometry, we do not have a unique
underlying manifold, but we can construct shadow manifolds. The phase
space manifolds (x, PB) and (XB, p) are just examples of these shadow man-
ifolds. This is essentially the same situation anticipated by Pauli [34] quoted
above.

The reason why one thinks this is not going in the right direction is, per-
haps, we expect the quantum process to be described in terms of a single
unique classical phase space. In other words we are expecting to map every-
thing into a single space. That would be fine if we were standing outside the
phenomena, but we are not outsiders, we are part of the whole process. We
may be detached observers but our measuring instruments are ‘inside’ the
process; they are part of the total process. This fits the essential message
that is contained in Bohr’s notion of wholeness as he insisted

The crucial point,..., implies the impossibility of any sharp separa-
tion between the behaviour of atomic objects and the interaction
with measuring instruments which serve to define the conditions
under which the phenomena appear.

He continues

Consequently, evidence obtained under different experimental con-
ditions cannot be comprehended within a single picture but must
be regarded as complimentary in the sense that only the totality
of the phenomena exhausts the possible information about the
objects. [Bohr [6]]
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The non-commutative algebra gives a mathematical expression to Bohr’s
words. The two shadow phase spaces are not in competition with each other,
but are necessary to give a more complete description of the quantum process,
which is what Bohm called ‘implicit’. Thus the algebraic approach provides
a deeper understanding of quantum phenomena and is not to be treated as
a rival alternative.

5 Conclusion

We have shown in this paper how the non-commutative quantum algebra in-
troduced by von Neumann has contained with in it both the Moyal and the
Bohm interpretations. They are merely different aspects of the same non-
commutative algebra. Furthermore this algebra has within it a commutative
sub-algebra which contains classical mechanics. A theory that discusses the
possibility of smooth transitions between the quantum and the classical the-
ories is called deformation quantum mechanics [30].

We have also shown how Bohr’s principle of complementarity and his
notion of wholeness, the inseparability of the object from its means of obser-
vation, are contained within the algebra. The time development equations
describing the quantum process do not need ‘wave’ functions for their def-
inition. The ‘wave’ is just a heuristic device to motivate an interest in the
formalism without the need to go into the deeper mathematical background.
It should not be given importance by calling it a state function. That leads
to the apparently insolvable problems of the interpretation of the formalism
in this form.

In the algebraic approach, it is the density matrix F (x, p, t) that plays
the central role. This object is an element in the algebra itself and does
not have to be imported from outside of the algebra. This is a more general
approach in which the ordinary approach emerges when the density matrix is
idempotent and of rank one. It is then that the wave function emerges. Since
the wave function is now given a secondary role, there is no measurement
problem and measurement is handled in the same way as it is in the Bohm
approach [5].

On the philosophical side, this non-commutative algebra is actually a
mathematical expression of Bohm’s implicate order [3]. The algebra is a
mathematical description of what Bohm calls the implicate order. The
shadow manifolds are examples of what Bohm calls explicate orders aris-
ing from the participation of ourselves or our measuring instruments in the
process itself. The implicate order takes process as it basic starting point
and from a set of structuring principles, one constructs, not only particles,
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but space-time itself. We are unable to develop these ideas further here, but
an account of this approach and its relation to our discussion here can be
found in Hiley [27].
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